TLT-Turbo Secures Ventilation Works for Swiss Baregg Tunnel Project

TLT-Turbo (GmbH), a leading supplier of ventilation equipment and systems has received a contract to provide longitudinal ventilation and escape route ventilation for the Baregg Tunnel project through a call for tender by the Swiss Federal Roads Office, ASTRA, based in Zofingen, Switzerland.

The scope of TLT-Turbo’s delivery on the project includes 16 stainless steel, dual-speed jet fans. The jet fans will meet the project’s temperature requirement of 250 °C/2 h. The contract also includes the supply of an extensive array of services including project management, documentation of performance and technical specifications, inspections, QA, testing, training of operating personnel and future maintenance. The order is currently being processed with completion of the installation expected by January 2024.

The Baregg tunnel and the Neuenhof covering are part of Switzerland’s N01 route, located between the exits and entrances of Baden-West and Wettingen. This section is known as one of the busiest sections of the Swiss national road network.

TLT-Turbo Head of Tunnel and Metro division, Jürgen Steltmann, said: “We scoped out this project by starting with a dimensional survey and inspection of the existing tunnel structure. This will be followed by planning, fabrication, factory tests and finally delivery and installation. We are confident that our approach will result in a ventilation solution that meets the requirements of the Baregg Tunnel project and ensures and safe environment for commuters.”

TLT-Turbo has over 100 years of experience in ventilation technology and has been developing, manufacturing, and constructing fans and ventilation systems for more than 40 years. This extensive experience has been consistently incorporated into the development of their tunnel ventilation systems.

According to Steltmann, to ensure a safe environment inside tunnels, TLT-Turbo’s foremost consideration is smoke. “In an emergency, smoke is one of the major hazards for people in an underground tunnel. Our ventilation systems provide clear visibility for escape routes. In case of fire, our Metro and Tunnel fans provide smoke free emergency exit routes.”

“Our other key considerations are quality, noise abatement and energy efficiency. Our fans are tested according to EN 12101-3 give tunnel operators peace of mind that they are receiving ventilation equipment that meets their specifications and is of the highest quality. From there, TLT-Turbo combines specially selected materials, highly heat-resistant motors and design precision to blend quality assurance with the highest economic efficiency,” Steltmann explains.

The aerodynamic features of TLT-Turbo’s Jet Fan range guarantee low power consumption and installation costs. They also help to keep the acoustic noise low. These fans may be used in tunnel sections as jet fans with free inlet and outlet and as axial fans in ducted installations. The success story of these fans started in the early 1970’s in the Alps and several important Alptransit-routes have been equipped with TLT-Turbo tunnel fans since then – including ventilation for the longest railway tunnel worldwide in the Gotthard Base Tunnel.

“Our track record combined with the fact we have well-trained, experienced staff who collaborate with leading international consultants to ensure that we meet expected international standards are what have made TLT-Turbo not just a supplier, but a preferred tunnel and metro ventilation partner renowned for redefining ventilation quality and performance,” Steltmann concludes.

Read More

Join us for a live webinar on Basics of Fan Aerodynamics and Optimization Potentials

Date: May 19, 2021 | Time: 1:00 p.m. – 2:00 p.m. (CET)

During a short journey through the topics of fan aerodynamics, our TLT-Turbo fan experts pick you up at the aerodynamic basics and show you which improvements are possible through aerodynamic optimizations.

Starting with the basic understanding of volume flow and pressure rise, the journey continues via the origin and definition of the operating points to the various aerodynamic control types of fans in technical systems. You will understand the differences between fan types and the definition of efficiency. The journey ends with the identification of different optimization potentials of axial fans and how TLT-Turbo can support you in optimizing them.

Unable to make the Live Webinar? Visit www.tlt-turbo.com to view the simulcast after the live date.

We look forward to hosting you!

Regards,

TLT-Turbo

Read More

Research Reveals Best Wear Solutions for Ventilation Equipment

Long lasting equipment is a must have for many industries due to the cost savings that can be derived from a longer lifespan on equipment and components. At their recently upgraded testing facility, TLT-Turbo GmbH are using a new research methodology based on dust particulate samples from steel manufacturing and processing facilities to determine the best solutions for minimizing wear on ventilation equipment based on the unique abrasive factors of this specific operating environment.

TLT Turbo GmbH is one of the world’s leading suppliers of heavy-duty centrifugal fans designed to operate efficiently in the most challenging applications. In the steel industry, these fans are exposed to high dust loads which causes them to prematurely fail due to faster wear. To determine the best solutions for slowing wear and tear, TLT-Turbo researchers procured original samples of the dust present at customer facilities and used these to investigate the reasons for wear and to determine remedies for reducing it.

Factors Affecting Wear on Fans

According to Sabine Groh, Product Manager for industry fans at TLT-Turbo in Bad Hersfeld, Germany, the main contributing factor to wear is the velocity of the abrasive particle. The erosion rate measurement below illustrates the exponential increase in the erosion rate based on velocity.

(Above) Figure 1: Erosion rate in relation to velocity of particles

Groh states that additional factors include hardness, shape, number of particles and the angle between the particle jet and the surface of the fan component. The image below provides an indication of the typical shape of the abrasive particles used for research at TLT-Turbo’s newly upgraded particle jet test stand in Zweibrücken.

(Above) Figure 2: Magnified image of typical dust used in particle jet experiments

Finally, Groh argues that the particle size in comparison to the size and distribution of grain of the coating also plays a role. Figure 3 below shows a micrograph of a hardfacing layer suitable for abrasive dust with small particle sizes using a prototypical particle of 20µm. Figure 4 below shows a micrograph of a common Chrome Carbide hardfacing with a prototypical particle of 20µm as well. “In Figure 3 we can observe that the particle is less able to wash out the matrix because of the more homogenous distribution of the smaller grains. Figure 4 however shows that the large grain size and large distribution allows for easier erosion of the matrix,” Groh explains.

(Above) Figure 3: 250x magnified photomicrograph of
special Hardfacing optimized for small abrasive
(Above) Figure 4: 250x magnified photomicrograph of typical Chrom Carbide Hardfacing

This proves that if the abrasive particles are small enough to impinge between the relatively hard grains of a hardfacing, then the matrix will be washed away and the grains will easily fall out afterwards. If the grains of the hardfacing are small enough with less space between them, matrix erosion will be prevented and the hardfacing will have a higher durability.

Emerging Research Trends

Over the last 10 years, TLT-Turbo performed thousands of particle jet tests to determine the erosion rate of different coatings and materials. To achieve a comparison between these coatings, a standardized test sand with a specific grain size distribution was utilized as abrasive material (as illustrated in Figure 2 above).

“TLT-Turbo has developed an extensive database on the erosion rates of different coatings and materials that have been exposed to the test sand at different angles and velocities. This database allows us to select promising solutions for customer’s abrasive problems,” says Groh. 

TLT-Turbo has recently upgraded its test equipment and now has the capability to test using original dust supplied by the customer. Groh explains that this allows for the specific customer application, with all major influencing factors to be reproduced. In addition to the velocity and angle of the abrasive dust, a realistic indication of particle size, shape and hardness can now contribute to more accurate test results. “This means that we can provide a more definitive prediction of how a change in wear protection will affect the service lifespan of the equipment to each customer.”

Wear Test Case

The TLT-Turbo test lab asked a European customer to provide samples of dust from their facility for testing to determine how they could benefit from a coating solution suited to their specific application and environmental challenges.

(Above) Figure 5: A sample of the dust provided for testing

From this specific dust particle sample, the grain size distribution was determined by performing a sieve analysis. Particle jet experiments were then performed on two preselected coatings. These experiments are in accordance with the norm DIN 50332 and were executed for three angles: 20°, 45° and 90°.

Figure 6 below illustrates the test results. The TLT W-104 coating was determined to be the best alternative for all impact angles, however the superiority of W-104 is best illustrated when used for the 90° impact angle.

(Above) Figure 6: Erosion rate of customer dust for preselected coatings

In extremely abrasive applications, the choice of wear protection determines the service life of the fan. The upgraded test lab and particle jet test stand has afforded TLT-Turbo engineers a deeper understanding of the mechanisms behind wear and the effects of specialized solutions. This has led to new approaches in product advancement and development that are grounded in providing solutions that meet market requirements.

“The ability to use the original dust from the customer’s facility and duplicate the conditions such as velocity and the impingement angle on the coating, allows us to determine how all these factors including the shape, size and hardness of the abrasive particles affect erosion rates. TLT-Turbo has taken another great step forward in being able to reliably calculate the effect that changing in coatings to prevent wear will have on extending the service life of ventilation equipment. Establishing the best solution for wear related challenges now becomes a collaboration between TLT-Turbo and the customer.” Groh concludes.

Read More

Exciting Development from the MVR Department!

Announcing our first MVR low flow range order!

We are excited to announce that an order has been secured for the supply of TLT-Turbo MVR fans from a globally renowned manufacturer for installation at an instant coffee production facility in Colombia.

Securing of this order comes after extensive engagement with this client over the past 4 years. The commitment and perseverance of the sales representatives involved, and the MVR team is highly commendable. Having a relationship with this client already in place means that this order may be the first step in a long-term strategic partnership.

The MVR fan that will be supplied is from the new Low Flow MVR Series. Having been in development for the past 18 months, this new addition to the MVR range is characterized by having a significantly smaller and more compact size while still delivering higher efficiencies. The development of this range is an exceptional achievement of our R&D department and product management team. Their delivery of this new range has allowed us to enter the small mass flows market which makes us more competitive.

The scope of work for the delivery, includes the supply of a 120kW drive power, approx. 4,500 kg/h mass flow, >83% efficiency high-speed MVR fan. The final installation site is an instant coffee production facility located in Medellin, Colombia.

The securing of this contract has already caught the attention of other global coffee producers and bodes well for the continued growth of our MVR department.

For more information on the TLT-Turbo MVR Range, click here.

Read More

We use cookies to give you the best online experience. By agreeing you accept the use of cookies in accordance with our cookie policy.